Preprocessing sparse semidefinite programs via matrix completion
نویسندگان
چکیده
منابع مشابه
Preprocessing sparse semidefinite programs via matrix completion
Considering that preprocessing is an important phase in linear programming, it should be systematically more incorporated in semidefinite programming solvers. The conversion method proposed by the authors (SIAM Journal on Optimization, vol. 11, pp. 647–674, 2000, and Mathematical Programming, Series B, vol. 95, pp. 303–327, 2003) is a preprocessing of sparse semidefinite programs based on matri...
متن کاملFast implementation for semidefinite programs with positive matrix completion
Solving semidefinite programs (SDP) in a short time is the key to managing various mathematical optimization problems in practical time. The matrix-completion primal-dual interior-point method (MC-PDIPM) extracts a structural sparsity of input SDP by factorizing the variable matrices, and it shrinks the computation time. In this paper, we propose a new factorization based on the inverse of the ...
متن کاملSolving Euclidean Distance Matrix Completion Problems Via Semidefinite Programming
Given a partial symmetric matrix A with only certain elements specified, the Euclidean distance matrix completion problem (EDMCP) is to find the unspecified elements of A that make A a Euclidean distance matrix (EDM). In this paper, we follow the successful approach in [20] and solve the EDMCP by generalizing the completion problem to allow for approximate completions. In particular, we introdu...
متن کاملPreprocessing and Regularization for Degenerate Semidefinite Programs
This paper presents a backward stable preprocessing technique for (nearly) ill-posed semidef5 inite programming, SDP, problems, i.e., programs for which the Slater constraint qualification, 6 existence of strictly feasible points, (nearly) fails. 7 Current popular algorithms for semidefinite programming rely on primal-dual interior-point, 8 p-d i-p methods. These algorithms require the Slater c...
متن کاملPreprocessing and Reduction for Degenerate Semidefinite Programs
4 This paper presents a backward stable preprocessing technique for (nearly) ill-posed semidef5 inite programming, SDP, problems, i.e., programs for which Slater’s constraint qualification, 6 existence of strictly feasible points, (nearly) fails. 7 Current popular algorithms for semidefinite programming rely on primal-dual interior-point, 8 p-d i-p methods. These algorithms require Slater’s con...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Optimization Methods and Software
سال: 2006
ISSN: 1055-6788,1029-4937
DOI: 10.1080/10556780512331319523